

PRATHYUSHA
ENGINEERING COLLEGE

Poonamallee ï Tiruvallur Road, Chennai ï 602025.

CS8491

Computer Architecture

(Anna University ï 2017 Regulation)

Prepared by

Ms.R.Kannamma,

AP in CSE, PEC

UNIT ï I

UNIT I BASIC STRUCTURE OF A COMPUTER SYSTEM 9

Functional Units ï Basic Operational Concepts ï Performance ï Instructions: Language of the Computer ï Operations,

Operands ï Instruction representation ï Logical operations ïdecision making ï MIPS Addressing.

COMPONENTS OF A COMPUTER SYSTEM

BASIC STRUCTURE OF COMPUTER

COMPUTER

A Computer is a machine which accepts input information in the digitized form, processes the input according to

a set of stored instructions and gives an output in a form understandable by user.

PROGRAM AND DATA

The set of stored instructions according which input are processed by computer are called programs and input and

output information is called data.

TYPES OF COMPUTER

Computers are classified according to size, cost, power of the processor, and type of usage. Personal computers are most

common computers and Super computers are most powerful computers.

Some of types of computer are

ü Personal computers

ü Notebook computers

ü Workstations

ü Enterprise systems and Servers

ü Mainframes

ü Supercomputers

I. HARDWARE PARTS OF THE COMPUTER SYSTEM:

A computer consists of five functionally independent main parts

1. Input

2. Output

3. ALU

4. Control Unit
5. Memory

The operation of a computer can be summarized as follows

V The computer accepts programs and the data through an input and stores them in the memory.

V The stored data are processed by the arithmetic and logic unit under program control.

V The processed data is delivered through the output unit.

V All above activities are directed by control unit

Input unit

ü The computer accepts coded information through input unit. The input can be from human operators,

electromechanical devices such as keyboards or from other computer over communication lines.

ü Examples of input devices are

V Keyboard, joysticks, trackballs and mouse are used as graphic input devices in conjunction with display.

V Microphones can be used to capture audio input.

Keyboard

¶ It is a common input device.

¶ Whenever a key is pressed, the corresponding letter or digit is automatically translated into its corresponding

binary code and transmitted over cable to the memory of the computer.

Output unit

¶ The function of output unit is to produce processed result to the outside world in human understandable form.

¶ Examples of output devices are Printer, Graphical display.

Arithmetic and logic unit

 Arithmetic and logic unit (ALU) and control unit together form a processor.

Actual execution of most computer operations takes place in arithmetic and logic unit of the processor.

Example:

 Suppose two numbers located in the memory are to be added. They are brought into the processor, and the actual

addition is carried out by the ALU.

Registers:

ü Registers are high speed storage elements available in the processor.

ü Each register can store one word of data.

ü When operands are brought into the processor for any operation, they are stored in the registers.

ü Accessing data from register is faster than that of the memory.

Control unit Control unit coordinates the operation of memory, arithmetic and logic unit, input unit, and output unit.

Control unit sends control signals to other units and senses their states.

Central processor unit(CPU) : Also called processor. The active part of the computer, which contains the datapath and

control and which adds numbers, tests numbers, signals I/O devices to activate, and so on.

Datapath: The component of the processor that performs arithmetic operations.

Memory unit

The storage area in which programs are kept when they are running and that contains the data needed by the running

programs. Memory is classified into primary and secondary storage.

Primary storage

ü It also called main memory.

ü It operates at high speed and it is expensive.

ü It is Volatile memory (which loses its data when the power is turned off)

ü It is directly accessed by CPU to store and retrieve information.

ü It is made up of large number of semiconductor storage cells, each capable of storing one bit of information.

ü Programs must reside in the primary memory during execution.

ü RAM:

V It stands for random access memory. Memory in which any location can be reached in a short and fixed

amount of time by specifying its address is called random-access memory.

ü Two types are static DRAM (SRAM) and Dynamic RAM(DRAM).

ü The memory is where the programs are kept when they are running; it also contains the data needed by

the running programs. The memory is built from DRAM chips. DRAM stands for dynamic random

access memory.

ü static random access memory (SRAM) Also memory built as an integrated circuit, but faster and less

dense than DRAM
ü Cache Memory

V They are small and fast RAM units.

V They are tightly coupled with the processor.

V They are often contained on the same integrated circuits(IC) chip to achieve high performance.

Secondary memory

ü It is slow in speed.

ü It is cheaper than primary memory.

ü Its capacity is high.

ü It is used to store information that is not accessed frequently.

ü Various secondary devices are magnetic tapes and disks, optical disks (CD-ROMs), floppy etc.

MEMORY ORGANIZATION

The memory is organized as collection of words. Each word is referred by an address 0 to M

BIT (BINARY DIGIT) :The memory contain large number of storage cells, each capable of storing 0 or 1 is called a BIT

WORD: cells are grouped together in a fixed size called word. This facilitates reading and writing the content of one

word (n bits) in single basic operation instead of reading and writing one bit for each operation. Each word is associated

with a distinct address that identifies word location. A given word is accessed by specifying its address.

Wordlength :The number of bits in each word is called as Wordlength

Addresses:These are the numbers that identified each location / word in memory

Byte: 8 Bits of memory is called Byte

Byte Addressable:

The memory is said to be byte addressable if every byte has separate address.Modern Processors use Byte addressing

Byte addressing within a word is represented in two ways

i. Big Endian Addressing

ii. Little Endian Addressing

Big-endian Arrangement Little -endian Arrangement

 Word address Byte address Word address Byte address

II. Software:

Software can be divided into two categories. 1. System software and 2. Application software.

System software: System software are the program that runs and control the hardware units of the

system. System software gets installed when the operating system is installed on the computer. It

includes programs for compiler, linker and loader etc.

Applicati on software: Application software runs over the system software. These software are

installed according to the requirements of the user. Example: C, C++, Java, Ms-word etc.

0 0 1 2 3

4 4 5 6 7

 .

.

.

2k-4 2k-4 2k-3 2k-2 2k-1

0 3 2 1 0

4 7 6 5 4

 .

.

.

2k-4 2k-1 2k-2 2k-3 2k-4

Compiler: A Program that translates high-level language statements into assembly language statements. It takes entire

program as input. The program need not be compiled everytime. The errors are displayed after the entire program is

checked.

Interpreter: It takes single instruction as input. Everytime high level languages are converted in to Low level language.

The errors are displayed after every instruction interpreted.

Assembler: A program that translates a symbolic version of instructions(Assembly language program) into the binary

version.

Assembly language: A symbolic representation of machine instructions. Instructions arewritten using Mnemonics.

Machine language: A binary representation of machine instructions.

High level Programming Language: A portable language such as C, C++, Java or Visual Basicthat is composed of

words and algebraic notation that can be translated by a compiler into assembly language.

For example:

TECHNOLOGY USED IN COMPUTER

 The technology that have been used in computers are changing constantly over time and it is given below.

Á Vacuum Tubeis the electronic component used in Ist generation computer. An electronic

component that consists of a hollow glass tube about 5 to 10 cm long from which as much air hasbeen

removed as possible and which uses an electron beam to transfer data.

Á Transistor is the semiconductor device used in IInd generation computer. It is an on/off switch

controlled by an electric signal. This will reduce the physical size and power dissipation of the computer

and increase the performance.

Á Integrated Circuit(IC) combined dozens to hundreds of transistors into a single chip. This will further

reduce the physical size, power dissipation and increase the performance.

Á Very large scale integrated (VLSI) circuit:A device containing hundreds of thousands

to millions of transistors.

Á Ultra la rge-scale integration (ULSI) is the process of integrating or embedding millions of transistors

on a single silicon semiconductor microchip.

Mooreôs Law: The number of transistors is a chip is doubled in every 18 to 24 months.

Á Growth of DRAM capacity

 Mooreôs law resulted from a prediction of such growth in IC capacity

made by Gordon Moore, one of the founders of Intel during the 1960s.

 The growth of Dram capacity quadrupled for every 3 years from 1977 to 1995 and in recent

years the rate of increase has slowdown and approximately doubling every 2 or 3 years.

 Year - Chip Size

1977 - 16 K

1980 - 64 K

1983 - 256 K

1986 - 1 M

1989 - 4M

1992 - 16 M

1996 - 64 M

1998 - 128 M

2000 - 256 M

2004 - 512 M

2007 - 1 Gbit

Á Growth of Transistor in processors.

 Year - Processor - No of Transistor

 1978 - 8086 - 20,000

 1982 - 80286 - 100,000

 1985 - 80386 - 200,000

 1989 - 80486 - 1000,000

 1993 - Pentium - 5 x 106
 2001 - Pentium IV - 20 x 106
 2005 - Core 2 dual - 200 x 106

POWER WALL

Both clock rate and power increased rapidly fordecades, and then flattened off recently.

For CMOS, the primary source of energy consumption is so-called dynamic energyðthat is, energy that is consumed

when transistors switch states from 0 to 1 and vice versa. The dynamic energy depends on the capacitive loading of each

transistor and the voltage applied:

The increase in clock rate and power of eight generations of Intel microprocessors over 30 years.

The dynamic energy depends on the capacitive loading of each transistor and the voltage applied

The energy of a single transition is then

The dynamic power dissipation depends on the capacitive loading of each transistor, the voltage applied and the frequency

that the transistor is switched.

 Power = Capacitive Load x Voltage2 x Frequency switched.

 Frequency switched is a function of the clock rate. The capacitive load per transistor is a function of both the

number of transistors connected to an output (called the fanout) and the technology, which determines the capacitance of

both wires and transistors.

The above figure shows how could clock rates grow by a factor of 1000 while power grew by only a factor of 30?

Energy and thus power can be reduced by lowering the voltage, which occurred with each new generation of

technology, and power is a function of the voltage squared. Typically, the voltage was reduced about15% per generation.

In 20 years, voltages have gone from 5 V to 1 V, which is whythe increase in power is only 30 times.

PERFORMANCE MEASURE

 Performance of a computer can be measured by speed with which it can execute the program. Response time and

Throughput are the two factors to measure the performance.

 Response time Also called execution time. The total time required for the computer to complete a task, including

disk accesses, memory accesses, I/O activities, operating system overhead, CPU execution time, and so on.

 Throughput Also called bandwidth. Another measure of performance, it is the number of tasks completed per

unit time.

Speed of the computer is affected by

ü Hardware design

ü Machine language instruction of the computer.

ü Compiler, which translates high-level language into machine language.

For best performance, it is necessary to design hardware, machine instruction set and compiler in a coordinated way.

I. RELATIVE PERFORMANCE

II. CPU PERFORMANCE AND IT S FACTOR

EXAMPLE

IMPROVING PERFORMANCE

III. INSTRUCTION PERFORMANCE

EXAMPLE:

Suppose we have two implementations of the same instruction set architecture. Computer A has a clock cycle time of 250

ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same

program. Which computer is faster for this program and by how much?

The Classic CPU Performance Equation:

Example:

Solution:

number of instruction classes.

PERFORMANCE MEASUREMENT

 The computer community adopted the idea of measuring computer performance using benchmark programs. To

make comparisons possible, standardized programs must be used. The performance measure is the time it takes a

computer to execute a given benchmark.

 A nonprofit organization called System Performance Evaluation Corporation (SPEC) measures the performance

of the system.

The SPEC rating is computed as follows

Running time on the reference computer

 SPEC rating = --

Running time on the computer under test

Let SPECi be the rating for program i in the suite. The overall SPEC rating for the computer is given by

 SPEC rating =()n
1

i

n

1i SPECÔ=

 where n is the number of programs in the suite

INSTRUCTION IN MIPS

OPERATION AND OPERANDS IN MIPS

Based on operations the MIPS instructions are classified into five groups/Instructions types

1. Arithmetic instruction

2. Logical Instructions

3. Data transfer Instructions

4. Conditional Branch Instructions

5. Unconditional Jump Instructions

1. Arithmetic instructions (R-Type)

These Instructions will perform arithmetic operations with register only.

 Examples: add for addition of two registers

 Sub for subtraction

 addi for adding a constant

Arithmetic Instructions

Instruction Example Meaning Comments

add add $s1,$s2,$s3 $s1=$s2+$s3 Three register operands

subtract sub $s1,$s2,$s3 $s1=$s2 - $s3 Three register operands

add immediate addi $s1,$s2,20 $s1=$s2 + 20 Used to add constants

Example 1:

 C code for the following instruction:

 f = (g + h) - (i + j);

ü f, é, j in $s0, é, $s4

¶ Compiled MIPS code:

add $t0, $s1, $s2

add $t1, $s3, $s4

sub $s0, $t0, $t1

2. Logical Instructions (LOGICAL OPERATIONS)

These Instruction will perform logic operations and shift operations with register only.

Shift Instruction moves all the bits in a word to the left or right, filling the emptied bits with 0s. The

shamt field in the R-format. It stands for shift amount and is used in shift instructions.

Logical Instruction s

Instruction Example Meaning Comments

and and $s1 =$s2 & $s3
Three register operands; bit-by-bit

$s1,$s2,$s3 AND

or or $s1,$s2,$s3 $s1 =$s2 | $s3 Three register operands; bit-by-bit OR

not nor $s1,$s2,$s3
$s1 = ~($s2 |

$s3)

Three register,operands; bit-by-bit

NOR

and immediate andi $s1,$s2,20 $s1 =$s2 & $20 Bit-by-bit AND register with constant

or immediate ori $s1,$s2,20 $s1 =$s2 | $20 Bit-by-bit OR register with constant

shift left logical sll $s1,$s2,10 $s1 =$s2 << 10 Shift left by constant

shift right

logical
sr l $s1,$s2,10 $s1 =$s2 >> 10

Shift right lo by constant

Example

AND

¶ Useful to mask bits in a word

¶ Select some bits, clear others to 0 and $t0, $t1, $t2

OR

¶ Used to include bit in a word

ü Set some bits to 1, leave others unchanged or $t0, $t1, $t2

NOT

¶ Useful to invert bits in a word
ü Change 0 to 1, and 1 to 0

SHIFT LEFT LOGICAL

sll $s1,$s2,4 # reg $t2 = reg $s0 << 4 bits

Before Execution

For example, if register $s0=9

0000 0000 0000 00000 000 0000 0000 0000 1001two= 9ten

The instruction to shift left by 4 was executed, the new value would look like this:

After Execution

0000 0000 0000 0000 0000 0000 0000 1001 0000two= 144ten

SHIFT RIGHT LOGICAL

Srl $s1,$s2,1 # reg $t2 = reg $s0 » 1 bits

Before Execution

For example, if register $s0 = 9

0000 0000 0000 00000 000 0000 0000 0000 1001two= 9ten

The instruction to shift right by 1 was executed, the new value would look like this:

After Execution

0000 0000 0000 0000 0000 0000 0000 0000 0100two= 4two

3. Data transfer Instructions

These instruction will transfer data between registers and main memory.

 Examples: lw load word i.e. transfer of data from memory to register

 sw store word i.e. transfer of data from register to memory

 Arithmetic operations occur only on registers in MIPS instructions; thus, MIPS must include instructions

that transfer data between memory and registers. Such instructions are called data transfer instructions. To

access a word in memory, the instruction must supply the memory address.Memory is just a large, single-

dimensional array, with the address acting as the index to that array, starting at 0.

EXAMPLE

load word lw $s1,100($s2) $s1 = Memory[$s2 + 100] Data from memory to register

 The data transfer instruction that copies data from memory to a register is traditionally called load. The

format of the load instruction is the name of the operation followed by the register to be loaded, then a constant

and register used to access memory. The sum of the constant portion of the instruction and the contents of the

second register forms the memory address.

store word sw $s1,100($s2) Memory[$s2 + 100] = $s1 Data from register to memory

The data transfer instruction that copies data from Register to a Memory is traditionally called store.

.

 Instruction Example Meaning Comments

load word lw $s1,20($s2)
$s1 = Memory ($s2

+20) Word from memory to register

store word sw $s1,20($s2)
Memory ($s2 +20) =

$s1 Word from register to memory

load half lh $s1,20($s2)
$s1 = Memory ($s2

+20) Half word memory to register

load half unsigned lhu $s1,20($s2)
$s1 = Memory ($s2

+20) Half word memory to register

store half sh $s1,20($s2)
Memory ($s2 +20) =

$s1 Half word register to memory

load byte lb $s1,20($s2)
$s1 = Memory ($s2

+20) Byte from memory to register

load byte unsigned lbu $s1,20($s2)
$s1 = Memory ($s2

+20) Byte from memory to register

store byte sb $s1,20($s2)
Memory ($s2 +20) =

$s1 Byte from register to memory

load linked word ll $s1,20($s2)
$s1 = Memory ($s2

+20)

Load word as 1st half of

atomic swap

store condition sc $s1,20($s2) Memory ($s2 +20) = store word as 2nd half of

word $s1; $s1= 0 or 1 atomic swap

load upper immed lui $s1,20 $s1=20 * 216
Loads constant in upper 16

bits

Example: add i $s1, $s2, 20 # $s1= $s2+20

 lw $s1, 20($s2) #$s1=memory($s2+20)

 sw $s1, 20($s2) #memory($s2+20) = $s1

4. Conditional Branch Instructions (DECISION MAKING)

These instruction will perform transfer the control from current location to target address

when the specified condition is satisfied otherwise control will go to next instructions.

Examples: beq branch on equal

 bne branch not equal

 Branch instruction loads a new value into the program counter. As a result, the processor fetches and executes the

instruction at this new address, called branch target, instead of executing in sequential order.

 A Conditional branch instruction repeats the loop only if a specified condition is satisfied. If the condition is not

satisfied it comes out of the loop.

Decision making is commonly represented in programming languages using the if statement, sometimes

combined with go to statements and labels. MIPS assembly language includes two decision-making instructions, similar

to an if statement with a go to.

EXAMPLE

beq register1, register2, L1

This instruction means go to the statement labeled L1 if the value in register1 equals the value in register2. The mnemonic

beq stands for branch if equal. The second instruction is

bne register1, register2, L1

It means go to the statement labeled L1 if the value in register1 does not equal the value in register2. The mnemonic bne

stands for branch if not equal. These two instructions are traditionally called conditional branches.

Conditional Branch Instructions

Instruction Example Meaning Comments

branch on equal beq $s1,$s2,25
if($s1 == $s2) go t

o PC + 4 +100 Equal test ; PC- relative branch

branch on not

equal
bne $s1,$s2,25

if($s1!= $s2) go t o

PC + 4 +100 Not equal test ; PC- relative

set on less than slt $s1,$s2,$s3

if($s2 < $s3)

$s1=1;

else $s1 = 0 Compare less than for beq, bne

set on less than

unsigned

sltu

$s1,$s2,$s3

if($s2 < $s3)

$s1=1;

else $s1 = 0 Compare less than unsigned

set on less than slti $s1,$s2,20 if($s2 < 20) $s1=1; Compare less than constant

immediate else $s1 = 0

set on less than

immediate

unsigned

sltiu $s1,$s2,20

if($s2 < 20) $s1=1;

else $s1 = 0 Compare less than constant unsigned

Example:

Compiling IF statements:

5. Unconditional Jump Instructions

These instructions will transfer control from current location to target address.

Examples: J: jump to transfer address
 jr: jump to target address available in register $ra used for procedure return.

 jal: load the return address (PC+4)into register $ra and jump to target address, used for procedure call.

Note: MIPS processor has no I/O Instructions.

Unconditional Jump Instructions

Instruction Example Meaning Comments

jump j 2500 go to 10000 Jump to target address

jump register jr $ra go to $ra
For switch, procedure

return

jump and link jal 2500
$ra = PC + 4; go to

10000 For procedure call

OPERANDS AVAILABLE IN MIPS

MIPS instruction uses three type of operands

1. Register 2. Memory 3. Immediate

1. Register: MIPS processor has 32 registers.

The size of the register is 32 bits. These registers are represented by 5 bit binary number in the MIPS

instruction and they are referred by 2 or 3 character name in MIPS assembly code.

Example: add $t1, $s1, $s2 #$t1=$s1+$s2

2. Memory

 Since arithmetic and logic instructions use only register operands, MIPS need instruction to

transfer data between memory & register. Such instruction are called Data Transfer instructions.

 The instruction which transfer the data from memory to register is called Load.

Example: lw $t0, 8($s1)

 Ist operand Register operand

 II nd operand Memory operand

 8 is called offset

 $s1 is called base register

Á To get the proper memory address, the offset to be added to base registers $s1.

Á Normally base register $s1 will have address of data array

Á The offset 8 permits to get second element of data array.

3. Immediate

 Many times, a program will use a constant in an operation for example incrementing an index to

point to the next element of an array. This constant field size is 16 bit that permits ±215(32768).

 Example: add i $s3,$s3,4 # $s3 =$s3+4

 add i $s3,$s3,1 #$s3 =$s3+1

ADDRESSING MODES OF MIPS

The different ways in which the address of the operand is specified in an instruction is called addressing mode.

The addressing modes vary from one computer to another MIPS processor supports the following five addressing modes.

1. Immediate addressing, where the operand is a constant within the instruction itself.
2. Register addressing, where the operand is a register.
3. Base or displacement addressing, where the operand is at the memory location whose address is the sum of a register
and a constant in the instruction.
4. PC-relative addressing, where the branch address is the sum of the PC and a constant in the instruction.
5. Pseudodirect addressing, where the jump address is the 26 bits of the instruction concatenated with the upper Four bits

of the PC.

1. Immediate addressing: The operand is a constant within the instructionitself. i.e. The operand is specified in the
instruction itself.

Example: Add i $t1, $s1,d

2. Register addressing: The operand is in a CPU register. The register is specified in the instruction.

Example: add $t1, $S1, $S2

3. Base or displacement addressing: The operand is at the memory location whose address is the sum of a register and a
constant in the instruction.

Here the operand is a memory location whose address is the sum of register (base register) and a constant

(offset/displacement)

Example: lw $s1, 20($s2)

4. PC-relative addressing: The branch address is the sum of the PC and a constant in the instruction.

Example :beq $rs, $rt, d

5. Pseudo-direct addressing: The jump address is the 26 bits of the instruction concatenated withthe upper Four bits of the
PC.

Example : j d

REPRESENTATION OF INSTRUCTION (INSTRUCTION FORMAT)

1. R-TYPE : Used in arithmetic Instruction

2. I -type : used in data transfer instruction and conditional branch instruction

3. J-type: used in unconditional branch instructions.

R-TYPE:

This instruction format is called R type and used for arithmetic and logic instruction.

 The meaning of each field is given below

Á op : Basic operation of the instruction (op code)

Á rs : The first register source field

Á rt : The second register source field

Á rd : The register destination field get the result

Á shamt: shift amount for shift instruction and zero for other

instruction

Á funct : called function code specific variant of the operation in the op field

 All register field are 5 bit to refer any one of the 32 MIPS registers.

Example : add $t0, $s1, $s2 # $t0=$s1+$s2

I -TYPE: This is used for immediate as well as data transfer

instruction.

 The meaning of each field is given below

Á op : op code

Á rs : The first register source field

Á rt : register destination for load & source for store

Á constant or address : constant is used in immediate instruction and address is used in data

transfer instruction

This format is used for branch instruction and it is similar to I type.

 The meaning of each field is given below

Á op : op code

Á rs : The first register source field

Á rt : Second register source field

Á address : address is used in branch instruction

Example :beq $s1, $s2,d #if($s1=$s2) goto (PC+4+(4*d))

iii) J-TYPE: This instruction format is used for jump instruction called J type.

The meaning of each field is given below

 WHERE op : op code and Address : used in jump

Example : j d # go to 4*d

UNIT II

ARITHMETIC OPERATIONS

ALU - Addition and subtraction ï Multiplication ï Division ï Floating Point operations Subword

parallelism.

ARITHEMETIC AND LOGICAL UNIT

The arithmetic logic unit (ALU) performs

¶ The arithmetic operations like addition and subtraction.

¶ Logical operations like AND and OR.

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Letôs assume that we will connect 32 1-bit

ALUs to create the desired ALU.

ALU -ADDITION

 1-Bit MIPS ALU

1.1 HALF ADDER

Truth table :CarryOut = (b · CarryIn) + (a · CarryIn) + (a · b) + (a · b · CarryIn)

