ESTD. 2001

PRATHYUSHA

ENGINEERING COLLEGE

Poonamallee’ Tiruvallur Road, Chennai i 602025.

CS8491
Computer Architecture

(Anna University T 2017 Regulation)

Prepared by
Ms.R.Kannamma,
AP in CSE, PEC

UNIT T |

UNIT | BASIC STRUCTURE OF A COMPUTER SYSTEM 9
Functional Unitsi Basic Operational ConceptsPerformaicei Instructions: Language dhe Computeii Operations,
Operand$ Instruction representatidnLogical operation$ decision making MIPS Addressing.

COMPONENTS OF A COMPUTER SYSTEM

BASIC STRUCTURE OF COMPUTER

COMPUTER
A Computer is a machine which accepts input information in the digitized form, processes the input accordin
a set of stored instructions and gives an output in a form understandable by user.

PROGRAM AND DATA
The set of stored instructions according which input are processed by computer are called programs and inpt
output information is called data.

TYPES OF COMPUTER
Computers are classified according to size, cost, power of the processor, aofiuyage Personal computers are most
common computers and Super computers are most powerful computers.

Some of types of computer are

U Personal computers

Notebook computers
Workstations

Enterprise systems and Servers
Mainframes

Supercomputers

[et i et et et

|. HARDWARE PARTS OF THE COMPUTER SYSTEM:

A computer consists of five functionally independent main parts
1. Input

2. Output

3. ALU

4. Control Unit
5. Memory

A rithtnietic
and logic

Iemory

Control

Processor

The operation of a computer can be summarized as follows

The computer accepts programs and the tiiatagh an input and stores them in the memory.
The stored data are processed by the arithmetic and logic unit under program control.
The processed data is delivered through the output unit.

All above activities are directed by control unit

Input unit

U The computer accepts coded information through input unit. The input can be from human operators,
electromechanical devices such as keyboards or from other computer over communication lines.
U Examples of input devices are
V Keyboard, joysticks, trackballs and ose are used as graphic input devices in conjunction with display.
V Microphones can be used to capture audio input.

<<<<

Keyboard
1 Itis a common input device.
1 Whenever a key is pressed, the corresponding letter or digit is automatically translated inteesizonding
binary code and transmitted over cable to the memory of the computer.
Output unit
1 The function of output unit is to produce processed result to the outside world in human understandable form.
1 Examples of output devices are Printer, Graphicalays
Arithmetic and logic unit
Arithmetic and logic unit (ALU) andontrol unit together form a processor.
Actual execution of most computer operations takes place in arithmetic and logic unit of the processor.
Example:
Suppose two numbers located lire tmemory are to be added. They are brought into the processor, and the act
addition is carried out by the ALU.
Registers:
U Registers are high speed storage elements available in the processor.
U Each register can store one word of data.
U When operands at&ought into the processor for any operation, they are stored in the registers.
U Accessing data from register is faster than that of the memory.
Control unit_Control unit coordinates the operation of memory, arithmetic and logic unit, input unit, and woitput
Control unit sends control signals to other units and senses their states.
Central processor unit(CPU) : Also called processor. The active part of the computer, wdoalains the datapath and
control and which adds numbers, tests numbers, sig@alielvices to activate, and so on.
Datapath: The component of the processor that performs arithmetic operations.

Memory unit
The storage area in which programs are kept when thesuanéng and that contains the data needed by the running

programsMemoly is classified into primary and secondary storage.
Primary storage
U It also called main memory.
It operates at high speed and it is expensive.
It is Volatile memory (which loses its data when the power is turned off)
It is directly accessed by CPU to st@nd retrieve information.
It is made up of large number of semiconductor storage cells, each capable of storing one bit of information.
Programs must reside in the primary memory during execution.
RAM:
V It stands for random access memory. Memory in fvlaioy location can be reached in a short and fixed
amount of time by specifying its address is called randooess memory.
i Two types are static DRAM (SRAM) and Dynamic RAM(DRAM).
U Thememory is where the programs are kept when they are running; it alsaimethe data need by
the running programs. Bimemory is built from DRAM chip©RAMstands fodynamic random
access memory
U static random access memory (SRAMAIso memory built as an integrated circuit, but faster and less
dense than DRAM
i Cache Memay

[entiN en i et B ent N et i ant B e

V They are small and fast RAM units.
V They are tightly coupled with the processor.
V They are often contained on the same integrated circuits(IC) chip to achieve high performance.
Secondary memory
U Itis slow in speed.
It is cheaper than primary memory.
Its capacity is high.
It is used to store information that is not accessed frequently.
Various secondary devices are magnetic tapes and disks, optical disk(aE), floppy etc.

[t et et i]

MEMORY ORGANIZATION
The memory is organized as collection of worlisich words referred by an address 0 to M
BIT (BINARY DIGIT) :The memory contain large number of storage cells, each capable of storiig€called 81T

WORD: cells are grouped together in a fixed size called word. This facilitates reading and writing tdrg obrone
word (n bits) in single basic operation instead of reading and writing one bit for each op&atiorword is associated
with a distinct address that identifies word location. A given word is accessed by specifying its address.
Wordlength :The number of bits in each word is called as Wordlength

AddressesThese are the numbers that identified each location / word in memory
Byte: 8 Bits of memory is calleByte
Byte Addressable:
The memory is said to be byte addressable if every byte haatsepddresblodern Processors use Byte addressing
Byte addressing within a word is represented in two ways
i. Big Endian Addressing
ii. Little Endian Addressing

Big-endian Arrangement Little -endian Arrangement
Word aldress Byte address Word addres Byte address
0 0 1 2 3 0 3 2 1 0
4 4 5 6 7 4 7 6 5 4

24 |29 22| 23] 24

o4 | 24 | 23| 22| 21

Il. Software:

Software can be divided into two categories. 1. System software and 2. Application software.
Sydem software: System software are the program that runs and control the hardware units of the
system. System software gets installed when the operating system is installed on the computer. It
includes programs for compiler, linker and loader etc.

Applicati on software: Application software runs over the system software. These software are
installed according to the requirements of the user. Example: C, C++, Jawayri¥istc.

weaWONS Sor,,

U L (<4
NS SO
> 1,
SN o

Compiler: A Program that translates higgvel language statements into assentbhguage statements. It takes entire
program as input. The program need not be compiled everytime. The errors are displayed after the entire progr
checked.

Interpreter: It takes single instruction as input. Everytime high level languages are cahivetteLow level language.
The errors are displayed after every instruction interpreted.

Assembler: A program that translates a symbolic version of instructions(Assembly language program) into the bir
version.

Assembly languageA symbolic representiin of machine instructions. Instructions arewritten using Mnemonics.
Machine languageA binary representation of machine instructions.

High level Programming Language:A portable language such as C, C++, Java or Visual Basicthat is composed
words andalgebraic notation that can be translated by a compiler into assembly language.

High-level swap(int wv[1. int k2
language {finmnt temp:
program temp = vILkl:
(in) vkl = wLk+11;:
vLk+11 = temp:
}

<‘ Compiler /)

-

Assembly swap :

language muli $2. $5.4

program add $2. 4.%2

(for MIPS) 1w 15, OC%HZ)
T w $16. A4CH2)
sw 16 . OCsE2)>
sw 15, A4CH2D
Jr 31

(Assembler)

R

Binary machine 00000000101 000010000000000011000
language 0000000000011 0000001100000100001
program 10001100011 000100000000000000000
(for MIPS) 100011001111 00100000000000000100
10101100111 100100000000000000000
10101100011 000100000000000000100
00000011111 000000000000000001000

For example:

A compiler enables a progra}nrﬁer to write this high-level language expression:
A+B
The compiler would compile it into this assembly language statement:

add A,B

The assembler would translate this statement into the binary instruction that tells
the computer to add the two numbers A and 8:

1000110010100000

TECHNOLOGY USED IN COMPUTER

The technology that have been used in computers are changing constantly over time and it is given below.

“Yeur | Tochnology used ncomputers___| _ olativ paiomance/ it cost _

1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit 800
1995 [Very large-scale integrated circuit 2,400,000
2013 | Ultra large-scale integrated circuit 250,000,000,000

A Vacuum Tubeis the ekctronic component used in® Igeneration computerAn electronic
component that consists of a hollow glass tube about 5 to 10 cm long from which as much air has|
removed as possible and which uses an electron beam to transfer data.

A Transistor is the seniconductor device used in"tl generation computer. It isnaon/off switch
controlled by an electric signarhis will reduce the physical size and power dissipation of the compute
and increase the performance.

A Integrated Circuit(IC) combined dozens to hdreds of transistors into a single chiphis will further
reduce the physical size, power dissipation and increase the performance.

A Very large scale integrated (VLSI) circuitA device containing hundreds of thousands
to millions of transistors.

A Ultra large-scale integration (JLSI) is the process of integrating or embedding millions of transistors
on a single silicon semiconductor microchip.

Mo o r e 0 sThelnamber of transistors is a chip is doubled in every 18 to 24 months.

A Growth of DRAM capacity
Moor e 6 s | aw resul ted from a predicti or
made by Gordon Moore, one of the founders of Intel during the 1960s.
The growth of Dram capacity quadrupled for every 3 years from 1977 to 1995 and in rec
years the rate of increase I&@wdown and approximately doubling every 2 or 3 years.

Year - Chip Size
1977 - 16 K
1980 - 64 K
1983 - 256 K

1986 - 1M

1989 - 4M

1992 - 16 M
1996 - 64 M
1998 - 128 M
2000 - 256 M
2004 - 512 M
2007 - 1 Gbit

A Growth of Transistor in processors.
Year - Processor - No of Transistor
1978 - 8086 - 20,000
1982 - 80286 - 100,000
1985 - 80386 - 200,000
1989 - 80486 - 1000,000
1993 - Pentium - 5x 10
2001 - PentiumlV - 20 x 16
2005 . Core 2 dual - 200 x 16

POWER WALL

Both clock rate and power increased rapidly fordecades, and &tem@d off recently.
For CMOS, the primary source of energy consumpisorocalled dynamic enerdythat is, energy that is consumed
when transistorswitch states from 0 to 1 andcei versa. The dynamic energy depends orcaipacitive loading of each
transistor and the voltage applied

The increase in clock rate and power of eight generations of Inteticroprocessors over 30 years.

- 120

10,000 3600 zEey 3300 3400]
O

2000
o= R T

T 1000+ _
= Clock Rate apg T80 £
= ; m
\-___‘ O 77 I
5 1004 56 teo =
i T
-
g Power T 40 E
& 10
+ 20
14 — — f f — i_T } - ——1—% o
o = w5 e = —] — T .
L2 2R %% 38 Eg EE::EE_gf‘!,p_er_' eog p 88
== o = 2= E = = .EEE-E"' g'ﬂg Eﬁ =
@ T @ = = EE':' E— ES 5 ‘EESI:_FEN Egug,hﬂ.
el FES LTS8 70 =

FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over aight generations
and 25 years. The Pentium 4 made a dramatic jump in cdock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower dock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

The dynamic energy depends on the capacitivéingeof each tragistor and the voltage applied
Energy o< Capacitive load = Voltage®

The energy of a single transition is then
Energy o< /2 = Capacitive load = Voltage’

The dynamic power dissipation depends on the capacitive loading of each transistor, the voltage applied and the frec
that the transistor is switched.
Power= Capacitive Load x Voltagex Frequency switched.

Frequency switched is a function of the clock rate. The capacitive load per traisssttunction of both the
number of transistors connected to an output (calleatih@ut) and the technology, whialletermines the capacitance of

both wires andransistors.

The above figure show$iow could clock rates grow by a factor of 1000 while power grew by only a factor of 307

Energy and thus power can be reduceddwering the voltage, which occurred with bagew generation of
technology, angbower is a function of the voltage squared. Typically, the voltage was reduced about15% per genera
In 20 years, voltages have gone from 5 V to 1 V, which is whythe increase in power is only 30 times.

PERFORMANCE MEASURE

Performance of a computer can be measured by speed with which it can execute the Regpanse time and
Throughput are the two factors to measure the performance.

Response timeAlso calledexecution time The total time required for the contputo complete a task, including
disk accesses, memory accesses, I/O activities, operating system overhead, CPU execution time, and so on.

Throughput Also calledbandwidth. Another measure of performance, it is the number of tasks completed per
unit time

Speed of the computer is affected by
U Hardware design
i Machine language instruction of the computer.
U Compiler, which translates highvel language into machine language.
For best performance, it is necessary to design hardware, machine instruction set and compiler in a coordinated \

. RELATIVE PERFORMANCE

1
Execution timey

Performancey =

This means that for two computers X and Y, if the performance of X is greater than
the performance of Y, we have

Performance, = Performance,
1 1
Execution timey Execution timey

Execution time, > Execution time,

That is, the execution time on Y is longer than that on X, if X is faster than Y.

In discussing a computer design, we often want to relate the performance of two
different computers quantitatively. We will use the phrase “X is n times faster than
Y —or equivalently “X is n times as fast as Y"—to mean

Performance,
— Xy

Performance,

If X is n times as fast as Y, then the execution time on Y is » times as long as it is
on X:
Performance, Execution time,

Performance, Execution time,

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is # times as fast as B 1if
Performance, Execution timep
Performancey Execution time ,

Thus the performance ratio is
15
=2 —15
10

and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance , 15
Performancey -
means that
Performance ,
— s Performance

II. CPU PERFORMANCE AND ITS FACTOR

execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

CPU execution time CPU clock cycles
foraprogram = foraprogram X Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time CPU clock cycles for a program
Clock rate

fora program =

WWe can now write this basic performance eguation in terms of instruction count
{the number of instructions executed by the program), CPI, and clock cyvcle time:

CPU time = Instruction count > CPI = Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

Instruction count > CPI
Clock rate

CPLT time =

These formulas are particularly useful because they separate the three key factors
that affect performance. We can use these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters.

EXAMPLE
IMPROVING PERFORMANCE

Owar favorite program runs in 10 seconds on computer A, which has a 2 GHz
clock. We are trying to help a computer designer build a computer, B, which will
run this program in 6 seconds. The designer has determined that a substantial
increase in the clock rate is possible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many clock cycles as
computer A for this program. What clock rate should we tell the designer to
target?

Lets first find the number of clock cycles required for the program on A:

_ CPU dock cycles

CPU time , Cl —
ock A

CPU clock cycles
o cvcles

10 seconds =
2> 10
second

1
CPU clock cycles, = 10 seconds X 2 X 10° SYEER — 20 % 10° cycles
second

CPU time for B can be found using this equation:

CPU time. = 127 CPU clock cycles
‘ g Clock rate

1.2% 20 X 10° cycles
Clock ratey

6 seconds =

1.2% 20X 10° cydles 02X 20X 10° cydes 4 X 10° cycles
6 seconds second second

Clock rateg = = 4 GHz

To run the program in 6 seconds, B must have twice the clock rate of A.

. INSTRUCTION PERFORMANCE

. Avwerage clock cycles
CPU clock cycles = Instructions for a program > per instruction

EXAMPLE:

Suppose we have two implementations of the same instruction set architecture. Computer A has a clock cycle time «
ps and a CPI of 2.0 for some program, and conniteas a clock cycle time of 500 ps and a CPI of 1.2 for the same
program. Which computer is faster for this program and by how much?

We know that each computer executes the same number of instructions for
the program; let’s call this number I. First, find the number of processor clock
cycles for each computer:

CPU clock cycles, = I = 2.0
CPU clock cyclesy = I =< 1.2

Now we can compute the CPU time for each computer:
CPU time, = CPU clock cycles, x Clock cycle time
=] X 20 250ps = 500+] ps

Likewise, for B:
CPU timey = I X 1.2 X 500 ps = 600 X I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performance, Execution timep, 600X Ips

1.2
CPU performancey Execution time , 500 #% Ips

We can conclude that computer A is 1.2 times as fast as computer B for this
program.

The Classic CPU Performance Equation:

We can now write this basic performance equation in terms of instruction count
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time = Instruction count < CPI X Clock cyde time

or, since the clock rate 1s the inverse of clock cycle time:

Instruction count X CPI

CPU time =~
Clock rate

Example:

A compiler designer is trving to decide between two code sequences for a
parnticular compater. The hardware designers have supplied the tollowing tacts:

_ CPI for aach Instruction ciass

{ ey | 1 | 2 | 3

For a particular high-level Lnguage statement, the compiler writer is
consderning two code sequences that require the following instruction counts

s troction counnts for sach insirection class
Coda segeence [= |

a a
2 1

bm|
HN|

Which code sequence executes the most instructions? Whach will be faster?
What is the CPI for each sequeence?

Solution:

Sequence lexecutes 2 + | + 2 = 5 instructions. Seguence 2 executes £ + 1 +
1 = & instructions, Therefore, sequence | executes fewer instrnictions
We can use the equation for CPU clock oycles based on instructon count

and CPI to find the total number of clock cycles for each sequence

-
CPU clock oycles E (CPl, < C,
i=1
This yields
<PuU Lll‘gkg}'\.lk’sl = (22X 1] 4+ {(A X 2) S+ (2DXC3) — 2 4246 — 10 cycles
CPUcddockoydes; = (4 X 1) +{1 X2)+{1 X31= 4+ 2+ 3= 9cycles

Socode sequence 2is faster. even though it executes one extra instruction. Since
code sequence 2 takes tewer overall clock cycles but has more instructions, it
must have a lower CPIL. The CPI values can be computed by

CPU clock cycles

Instruction coant

Pl =

CPU clock cycles, _ 10

CPl ————e = =950
Instruction count, =

> CPU clock cycles- - -

CPE. — — — 3 . e =g
Instruction count,, (S

Components of perormance

CPU execution time for a program

Seconds for the program

Instruction count

Instructions executed for the program

Clock cycles per instruction (CPI)

Average number of clock cycles per instruction

Clock cycle time

Seconds per clock cycle

FIGURE 4.2 The basic components of performance and how each is measured.
Designers often obtain CPI by a detailed simulation of an implementation or by
using hardware counters, when a CPU is operational. Sometimes it is possible to com-
pute the CPU clock cycles by looking at the different types of instructions and using
their individual clock cycle counts. In such cases, the following formula is useful:

CPU clock cycles = Z(CPIi x C,)
i=1

where C; is the count of the number of instructions of class 7 executed, CPI, is the
average number of cycles per instruction for that instruction class, and # is the

number of nstruction classes.

PERFORMANCE MEASUREMENT

The computer community adopted the idea of measuring computer performance using benchmark program
make comparisons possible, standardized programs must be used. The performance measure is the singe it t
computer to execute a given benchmark.

A nonprofit organization called System Performance Evaluation Corporation (SPEC) measures the perform
of the system.
The SPEC rating is computed as follows

Running time on the reference computer

SPEC rating

Running time on the computer under test
Let SPECi be the rating for program i in the suite. The overall SPEC rating for the computer is given by

SPEC rating :(O irLlSPEC;)%‘

where n § the number of programs in the suite

INSTRUCTION IN MIPS
OPERATION AND OPERANDS IN MIPS

Based on operations the MIPS instructionsire classified into fivgroups/Instructions types

1. Arithmetic instruction

2. Logical Instructions

3. Data transfer Instructics

4. Conditional Branch Instructions
5. Unconditional Jump Instructions

1. Arithmetic instructions (R-Type)
These Instructions will perform arithmetic operations with register only.
Examples: add for addition of two registers

Sub for subtraction
addi for adding a constant
Arithmetic Instructions
Instruction Example Meaning Comments
add add $s1,$s2,$s3 | $s1=$s2+3$s3 Three register operang
subtract sub $s1,$s2,$s3 | $s1=$s2 $s3 Three register operang
add immediate addi $s1,$s20 $s1=%$s2 + 20 Used to add constants

Example 1:
C code for the following instruction:

f=(g+h)-(+j);
a f, €, j in $s0, ¢é, $s4
1 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

2. Logical Instructions (LOGICAL OPERATIONS)
Theselnstructionwill perform logic operations and shift operations with register only.
Shift Instructionmoves all the bits in a word to the left or right, filling the emptied bits witi0s
shamtfield in the Rformat. It stands foshift amountindis used in shift instructions.

Logical Instructions

Instruction Example Meaning Comments

and $s1 =$s2 & $s3

and

Three register operands; 4y-bit

$s1,$s2,$s3

AND

or

or $s1,$s2,$s

$s1 =$s2 | $s3

Three register operands;4oy-bit OR

not

nor $4,$s2,$s3

$s1 = ~($s2 |
$s3)

Three register,operands; y-bit
NOR

and immediate

andi $s1,$s2,20Q

$s1 =$s2 & $20

Bit-by-bit AND register with constant

or immediate

ori $s1,%$s2,20

$s1 =$s2 | $20

Bit-by-bit OR register with constant

shift left logical | gl $s1,$s2,10 | $s1 =$s2 << 10 | Shift left by constant
shift right

, srl$s1,$s2,10 | $s1 =$s2 >> 10 o
logical Shift right lo by constant
Example
AND

9 Useful to mask bits in a word
1 Select some bits, clear others tar@l $t0, $t1, $t2

$t2

0000 0000 0000 0000 0000 1101 1100 0000

$t1

0000 0000 0000 0000 0011 1100 00000000

$t0
OR

0000 0000 0000 0000 0000 1100 0000 0000

1 Used to intude bit in a word

Set some bits to 1, leave others uncharaye®tO, $t1, $t2

$t2

0000 0000 0000 0000 00001101 1100 0000

$t1

0000 0000 0000 0000 0011 1100 0000 0000

$to

0000 0000 0000 00000011 1101 1100 0000

NOT

9 Useful to invert bits in a word

Change Oto1l,and1to 0

$t1

0000 0000 0000 0000 0011 1100 0000 0000

$t0

1111 1111 1111 1111 1100 0011 1111 1111

SHIFT LEFT LOGICAL

sll $s1,$s2,4 #eg $t2 = reg $s0 << 4 bits

Before Execution

For exampg, if register $s89

0000 0000 0000 00000 000 0000 0000 0000 1001two= 9ten

The instruction to shift left by 4 was executed, the new value would look like this:
After Execution

0000 0000 0000 0000 0000 0000 0000 1001 0000two= 144ten

SHIFT RIGHT LOGICAL

Srl $s1,$s2,1 #eg $t2 = reg $s0 » bits

Before Execution

For example, if register $s09

0000 0000 0000 00000 000 0000 0000 0000 1001two= 9ten

The instruction to shift right by Was executed, the new value would look like this:
After Execution

00000000 0000 0000 0000 0000 0000 0000@Wo=4two

Data transfer Instructions

These instruction will transfer data between registers and main memory.
Examples: Iw load word i.e. transfer of data from memory to register

sw store word i.e. transfer of tiafrom register to memory

Arithmetic operations occur only on registers in MIPS instructions; thus, MIPS must include instructic

that transfer data between memory and registers. Such instructions aredesdigdansfer instructiongo

access a worth memory, the instruction must supply the memargdressMemory is just a large, single

dimensional array, with the address acting as the index to that array, starting at 0.
EXAMPLE

load word Iw $s1,100($s2) $s1 = Memory[$s2 + 10Dhta from memory to register
The data transfer instruction that copies data from memory to a register is traditionallyozall€the

format of the load instruction is the name of the operation followed by the register to be loaded, then a con

and register used to aceememory. The sum of the constant portion of the instruction and the contents of 1

second register forms the memory address.

store word sw $s1,100($s2) Memory[$s2 + 100] = $8hta from register to memory

The data transfer instruction that copies dedenfRegisterto aMemoryis traditionally calledstore.

Processor

100

10

101

1

Biyte Address

Crata

Memory

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words.

The changed addresses are highlighted to contrast with Figure 2.2, Since MIPS addresses each byte. word
addresses are multiples of 4- there are 4 bytes in a word.
Instruction Example Meaning Comments
$s1 = Memory ($s2
load word lw $s1,20($s2)

+20)

Word from memory to registe

store word

sw $s1,20($s2)

Memory ($s2 +20) =
$s1

Word from regsterto memory

load half

lh $s1,20($s2)

$s1 = Memory ($s2
+20)

Half word memory to register

load half unsigned

lhu $s1,20($s2)

$s1 = Memory ($s2
+20)

Half word memory to register

store half

sh $s1,20($s2)

Memory ($s2 +20) =
$s1

Half word register to memory,

load byte

lb $51,20($s2)

$s1 = Memory ($s2
+20)

Byte from memory to register

$s1 = Memory ($s2

load byte unsigned Ibu $s1,20($s2) _
+20) Byte from memory to registel
Memory ($s2 +20) =
store byte sb $s1,20($s2) _
$s1 Byte from register to memory
_ $s1 = Memory ($s2 Load word as %t half of
load linked word | Il $s1,20($s2)

+20)

atomic swap

store condition

sc $s1,20($s2)

Memory ($s2 +20) =

store word as™® half of

word $s1 $s1=0or 1 atomic swap

Loads constant in upper 16

load upper immed| lui $s1,20 $s1=20 * 2° it
its
Example: addi $sl1, $s2, 20 # $s1= $s2+20
lw $s1, 20($s2) #$s1=memory($s2+20)
sw $s1, 20($s2) #memory($s2+20) = $s1

Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 words and that the compiler has
associated the variables g and h with the registers $51 and $57 as before.
Let’s also assume that the starting address, or base address, of the array is in
$ 5 3. Compile this C assignment statement:

g - h + A[8]:

Although there is a single operation in this assignment statement, one of
the operands is in memory, so we must first transfer AL8] to a register. The
address of this array element is the sum of the base of the array A, found in
register $53, plus the number to select element 8. The data should be placed
in a temporary register for use in the next instruction. the
first compiled instruction is

| w $t0,.8(%$s3) # Temporary reg $t0 gets AL8]

(We'll be making a slight adjustment to this instruction, but we’ll use this
simplified version for now.) The following instruction can operate on the value
in $t0 (which equals AL 8]) since it is in a register. The instruction must add
h (contained in $52) to A[8] (contained in % L0) and put the sum in the
register corresponding to g (associated with $51):

add $s1,.$s2.%L0 #t g = h + AL8]

Compiling Using Load and Store

Assume variable h is associated with register $52 and the base address of
the array A is in $53. What is the MIPS assembly code for the C assignment
statement below?

A[12] = h + A[8]:;

Tw $t0,32($s3) # Temporary reg $t0 gets A[S8]
add $t0,%$s2,$t0 # Temporary reg $t0 gets h + A[8]

sw $t0,48(%8s3) # Stores h + A[8] back into A[12]

4. Conditional Branch Instructions (DECISION MAKING)

These instruction will perform transfer the control from current lonab target address

when the specified condition is satisfied otherwise control will go to next instructions.
Examples: beg branch on equal

bne branch not equal

Branch instruction loads a new value into the program counter. As a result, tagspradetches and executes the
instruction at this new address, called branch target, instead of executing in sequential order.

A Conditional branch instruction repeats the loop only if a specified condition is satisfied. If the condition is r
satisfiedit comes out of the loop.

Decision making is commonly represented in programming languages usindj stetement, sometimes
combined withgo tostatements and labels. MIPS assembly language inctwdedecisioamaking instructions, similar
to anif staement with ggo ta
EXAMPLE
beq registerl, register2, L1
This instruction means go to the statement labeled L1 if the value in registerl equals the value in register2. The mne
beq stands fdnranch if equal The second instruction is
bne registerl,register2, L1
It means go to the statement labeled L1 if the value in registerindbequal the value in register2. The mnemonic bne
stands fobranch if not equalThese two instructions are traditionatiglledconditional branches

Conditional Branch Instructions

Instruction Example Meaning Comments

if($sl == $s2) go't

branch on equal | beq $s1,$s2,25 .
o PC +4 +100 Equal test ; PCrelative branch

branch on not if($sl!=$s2)goto
bne $s1,$s2,25 :
equal PC +4 +100 Not equal test ; PQelative

if($s2 < $s3)
seton less than | sit $s1,$s2,$s3 | $51=1;

else $s1 =0 Compare less than for beq, bne

if($s2 < $s3)
seton less than | sltu $s1=1"

unsigned $s1,$s2,$s3
else $s1 =0 Compare less than unsigned

set on less than | Slti $s1,$s2,20 | if($s2 < 20 $s1=1; | Compare less than constant

immediate else $s1 =0

set on less than if($s2 < 20) $s1=1:
immediate sltiu $s1,$s2,2(
unsigned else $s1 =0 Compare less than constant unsigng

Example:
Compiling IF statements:

f=g+h f=g—h
Exst:[
C code:
iF CG=—3) ¥ = guh;
else £ = g—h;
f, g, ... im$s0, 51, __.

Compiled MIFPS code:

bne %s3, %s4, Else
add S=s0, %=1, S5=2
| Exit
Else: =sub =0, $=s1, 5=2
|mmmmammmm§amaﬁﬁ

5. Unconditional Jump Instructions

Theseinstructions will transfer control from current location to target address.
Examples: J:jump to transfer address
jr: jump to target address ailable in register $ra used fprocedure return.

jal: load the return address (PC+4)into regi$t@rand jump to target address, used for procedure call.
Note: MIPS processor has no I/O Instructions.

Unconditional Jump Instructions

Instruction Example Meaning Comments

jump j 2500 go to 10000 Jump to target address

. _ _ For switch, procedure
jump register jr $ra go to $ra
return

. _ _ $ra=PC +4;goto
jump and link jal 2500
10000 For procedure call

C code:
while (save[i] == k) i += 1;

i in $s3, k in $s5, address of save in $s6

Compiled MIPS code:

Loop: s11 $t1, $s3, 2
add $t1, $t1, $s6
Tw $t0, 0($tl)
bne $t0, $s5, Exit
addi $s3, $s3, 1
Loop
Exit:

OPERANDS AVAILABLE IN MIPS

MIPS instruction uses three type of operands
1. Register 2. Memory 3. Immediate
1. Register: MIPS processor has 32 registers
The size of the register is 32 bits. These registers are represented by 5 bit binary number in the N

instruction and they are referred by 2 or 3 character name in MIPS assembly code.

Example: add $t1, $s1, $s2 #Pt1=3$s1+3$s2

bonae
t7erao O The constant value O
Evil—%wvwl 2-3 Values for results and expression evaluation
tal—%al A7 Arguments
£t0—%t7 815 Temporaries
£s0-%s7 1623 Saved
£+t8—%t9 24-25 More temporaries
$gp 28 Global pointer
£sp 29 Stack pointer
£tfp 30 Frame pointer
$ra 31 Return address

2. Memory

Since arithmeti@and logic instructions use only register operands, MIPS need instruction to
transfer data between memory & register. Such instruction are called Data Transfer instructions.
The instruction which transfer the data from memory to register is called Load.
Example: Iw $t0, 8($s1)
Ist operand Register operand
Il nd operand Memory operand

8 is called offset

$s1 is called base register
A To get the proper memory address, the offset to be added to base registers $s1.
A Normally baseegister $s1 will have address of data array
A The offset 8 permits to get second element of data array.
3. Immediate
Many times, a program will use a constant in an operation for example incrementing an index
point to the next element of an array. Thisstant field size is 16 bit that permits*¥32768).
Example: add i $s3,$s3,4 # $s3 =$s3+4
add i $s3,$s3,1 #$s3 =$s3+1

ADDRESSING MODES OF MIPS

The different ways in which the address of the operand is specified in an instruction iaddiissing mode
The addressing modes vary from one computer to anktf®s processor supports the following five addressing modes.
1. Immediate addressing, where the operand is a constant within the institsetion
2. Register addressing, where the opéris a register.
3. Base or displacement addressing, where the operand is at the memory lwbasenaddresis the sum of a register
and a constant in the instruction.
4. PGrelative addressing, where the branch address is the sum of the PCoaiddrat in theinstruction.
5. Pseudodirect addressing, where the jump address is the 26 bitdretthetion concatenated with the upper Four bits
of the PC.

1. Immediate addressingThe operand is a constant within tivestructionitself. i.e. The operands specified in the
instruction itself.

Immediate addressing

op | rs] rt] Immediate

Example: Addi $t1, $s1,d

2. Register addressingfhe operand is in a CPU register. The register is specified in the instruction.

Registar addreasing

op ' rs | rt rd | ... |fun£t| Reagisters

| I Fegister

Example: add 1, $S1, $S2

3. Base or displacement addressingfheoperand is at the memory location whose address is the sum of a register anc
constant in the instruction.

Base addressing

op 'rs | rt | Address Memory

Register (+ | [EBHiBH Halfword| Word

I 1

Here the operand is a memory location whose address is the sum of register (base register) and a con:
(offset/displacement)
Exampek: Iw $s1, 20($s2)

4. PC-relative addressingThe branch address is the sum of the PC aodrestant in the instruction.

4. PC-relative addressing

op | rs rt Address Memory

PC (+) - Word

Example :beq i, $rt, d

5. Pseudedirect addressing: The jump address is the 26 bits afidtauction concatenated witlgthupper Four bits of the
PC.

5. Pssudodirect addressing

op Address Memory
) T
PC (2)—— Word
N ik I
Example : j d

REPRESENTATION OF INSTRUCTION (INSTRUCTION FORMAT)

1. R-TYPE : Used in arithmetic Instruction

2. |-type : used in data transfer instruction and conditional branch instruction

3. J-type: used in unconditional branchinstructions.

R-TYPE:
This instruction format is called R type and used for arithmetic and logic instruction

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

The meaning of each field is given below
A op : Basic operation of the instruction (op code)

A rs . Thefirst register source field

A rt . The second register source field

A rd : The register destination field get the result

A shamt: shift amount for shift instruction and zero for other
instruction

A funct : called function code specific variant of the operation iophigeld

All register field are 5 bit to refer any one of the 32 MIPS registers.
Example : add $t0, $s1, $s2 # $t0=$s1+$s2

[-TYPE: This is used for imnmediate as well as data transfer

op rs rt constant or address

& bits 5 bits 5 bits 16 bits
instruction

The meaning of each field is given below
A op : opcode
A rs : The first register source field
A rt . register destination for load & source for store
A constant or address : constant is used in immediate instruction and address is used in
transfer instruction
This format is used for brah instruction and it is similar to | type.

op rs rt address

6 bits 5 bits 5 bits 16 bits

The meaning of each field is given below

A op : opcode

A rs : The first register source field

A rt : Second register source field

A address : address is used in branch instruction
Example :be@sl, $s2,d #if($s1=$s2) goto (PC+4+(4*d))

iii) J-TYPE: Thisinstruction format is used for jump instruction called J type.

op address

6 bits 26 bits

The meaning of each field is given below
WHERE op : opcodeand Address usedinjump

Example :j d # go to 4*d

UNIT II
ARITHMETIC OPERATIONS

ALU - Addition and subtraction 7 Multiplication T Division 1 Floating Point operations Subword
parallelism.

ARITHEMETIC AND LOGICAL UNIT
Thearithmetic logic unit (ALU) performs

1 The arithmdt operations like addition and subtraction

1 Logical operations like AND and OR.

Because the MIPS word is 32 bits wide, we need-biB®i de AL U. thattwé wsill canaest B 2ridt
ALUs to create the desired ALU.
ALU -ADDITION

1-Bit MIPS ALU
1.1 HALF ADDER

Truth table :CarryOut = (b - Carryln) + (a - Carryln) + (a - b) + (a - b - Carryln)
Operation

a—e
[O—(°
Result
[>
b —

FIGURE C.5.1 The 1-bit logical unit for AND and OR.

